segunda-feira, 2 de março de 2020


TRANS-QUÃNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Em mecânica estatística, a estatística de Fermi-Dirac é uma estatística quântica que rege as partículas de spin semi-inteiro, os férmions. Leva o nome de dois eminentes físicos: Enrico Fermi e Paul Adrien Maurice Dirac cada um dos quais descobriu o método de forma independente (embora Fermi tenha definido as estatísticas antes de Dirac).[1][2]

Formulação matemática[editar | editar código-fonte]

A distribuição de Fermi-Dirac é dada por
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



Onde:
 é o número médio de partículas no estado de energia .
 é a degenerescência do i-ésimo estado
 é a energia no i-ésimo estado
 é o potencial químico
 é a temperatura
 a constante de Boltzmann
Nos casos em que  é a energia de Fermi  e , a função é chamada de função Fermi:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 








Uma estatística quantica, no contexto da mecânica quântica e no da mecânica estatística, é a descrição de como a energia de cada um dos entes unitários constituintes de um ensemble está distribuida, dada uma energia total E constante, sob a restrição de que:
  1. a energia passa a ser quantizada;
  2. as partículas objeto de estudo passam a ser indistinguíveis.
Isso é feito expressando-se as probabilidades relativas de uma partícula com energia 
De modo clássico, a probabilidade é dada por:
onde
é a chamada função de partição
Nos casos quanticos, o que muda é a questão da quantização do espaço de fase, o que impõe um "volume" mínimo de célula possível nesse espaço.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 








Em mecânica estatística, a estatística de Bose–Einstein (ou mais coloquialmente estatística B-E) determina a distribuição estatística de bósons idênticos indistinguíveis sobre os estados de energia em equilíbrio térmico.

Formulação matemática[editar | editar código-fonte]

O número esperado de partículas num estado de energia i é:
onde:
 é o número de partículas no estado i.
 é a degenerecência quântica do estado i.
 é a energia do estado i.
 é o potencial químico.
 é a constante de Boltzmann.
 é a temperatura.
A estatística de Bose-Einstein reduz-se à estatística de Maxwell-Boltzmann para energias: 


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



Em mecânica estatística, a estatística Maxwell–Boltzmann descreve a distribuição estatística de partículas materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quânticos negligenciáveis. A estatística Maxwell–Boltzmann é consequentemente aplicável a quase qualquer fenômeno terrestre para os quais a temperatura está acima de poucas dezenas de kelvins.[1][2]
O número esperado de partículas com energia  para a estatística de Maxwell–Boltzmann é  onde:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



onde:
  •  é o número de partículas no estado i
  •  é a energia do estado i-ésimo
  •  é a degenerescência do nível de energia i, o número de estados dos partículas (excluindo o estado de "partícula livre") com energia 
  •  é o potencial químico
  •  é a constante de Boltzmann
  •  é a temperatura absoluta
  •  é o número total de partículas
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 



distribuição de Maxwell-Boltzmann tem sido aplicada especialmente à teoria cinética dos gases, e outros sistemas físicos, além de em econofísica para predizer a distribuição da renda. Na realidade a distribuição de Maxwell-Boltzmann é aplicável a qualquer sistema formado por N "partículas" ou "indivíduos" que interacambiam estacionariamente entre si uma certa magnitude  e cada um deles têm uma quantidade  da magnitude  e ao longo do tempo ocorre que .
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS 






estatística de Kaniadakis, ou distribuição κ, é uma generalização estatística da distribuição de Maxwell-Boltzmann desenvolvida pelo físico italiano Giorgio Kaniadakis[1] em 2001 e é utilizada no meio científico em diversas aplicações como física de reatores[2][3] e astrofísica.[4]

    A distribuição de Kaniadakis[editar | editar código-fonte]

    A distribuição de Kaniadakis pode ser considerada uma estatística não gaussiana ou ainda uma estatística quase Maxwelliana, pois é baseada numa generalização do teorema-H de Boltzmann,[5] sendo dependente do parâmetro κ que mostra o desvio do sistema em questão de um comportamento gaussiano. Essa distribuição é baseada numa função exponencial deformada exp{κ}(x) que obedece a seguinte condição:
    A função exponencial considerando a estatística de Kaniadakis é dada pela seguinte equação:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS